If you click on the journal of your publication of interest of the more recent publications, you'll get directed to the official journal website or even the pdf, if open access. Please also have a look at my profiles at Research Gate and Google Scholar Citations.

Publons Web or Sciences ResearcherID: ABD-7743-2020.

2023:

35) Hu, M.Y. & Stumpp, M. (2023) Surviving in an acidifying ocean: acid-base physiology and energetics of the sea urchin larvae. Physiology 38: 242-252

34) Hildebrand, J; Chang, W.W.; Hu, M.Y.; Stumpp, M. (2023) Characterization of digestive proteases in the gut of a basal deuterostome. J. Exp.. Biol. 226: jeb245789

2022:

33) Nour, O. N.; Pansch, C.; Stumpp, M. (2022) Freshening and warming may restrict dispersal of Hemigrapsus takanoi into the Baltic Proper due to interactive effects on larval survival and feeding. Mar Biol. 169: 1-11

32)    Breiderhoff, T.; Himmerkus, N.; Meoli, L.; Fromm, A.; Sewerin, S.; Kriuchkova, N.; Nagel, O.; Ladilov, Y.; Krug, S. M.; Quintanova, C,; Stumpp, M.; Garbe-Schönberg, D.; Westernströer, U.; Merkel, C.; Brinkhus, A.; Altmüller, J.; Schweiger, M. R.; Müller, D.; Mutig, K.; Morawski, M.; Halbritter, J.; Milatz, S.; Bleich, M.; Günze, D. (2022) Claudin-10a deficiency shifts proximal tubular Cl-permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Neph. 33: 699-717

2021:

31)    Stumpp, M.; Saborowski, R.; Jungblut, S.; Liu, H.-C.; Hagen, W. (2021) Dietary preferences of brachyuran crabs from Taiwan for marine or terrestrial food sources: evidence based on fatty acid trophic markers. Frontiers in Zoology 18: 1-12

30)    Nour, O.; Pansch, C.#; Lenz, M.; Wahl, M.; Clemmesen-Bockelmann, C.; Stumpp, M.'# (2021) To invade or not to invade: Impaired larval development at low salinities could limit the spread of the non-native crab Hemigrapsus takanoi in the Baltic Sea. Aquatic Biology 30: 85-99 (# shared supervision of PhD candidate O.M. Nour)

2020:

29)    Stumpp, M.; Petersen, I.; Thoben, F.; Yan, J.-J.; Leippe, M.; Hu, M. Y. (2020) Alkaline guts contribute to immunity during exposure to acidified seawater in the sea urchin larva. Journal of Experimental Biology 223

28)    Hu, M. Y.; Petersen, I.; Chang, W. W.; Burton, C.; Stumpp, M. (2020) Cellular bicarbonate accumulation and vesicular proton transport promote calcification in the sea urchin larva.. Proceedings of the Royal Society B 287: 20201506

27)    Di Giglio, S.; Lein, E.; Hu, M. Y.; Stumpp, M.; Melzner, F.; Malet, L.; Pernet, P.; Dubois, P. (2020) Skeletal integrity of a marine keystone predator (Asterias rubens) threatened by ocean acidification. Journal of Experimental Marine Biology and Ecology 526: 151335

26)    Morón Lugo, S.C.; Baumeister, M.; Nour, O.M. ; Wolf, F.; Stumpp, M.; Pansch, C. (2020) Warming and temperature variability determine the performance of two invertebrate predators. Scientific Reports 10: 1-14

25)    Nour, O.M.; Stumpp, M.#; Morón Lugo, S.C.; Barbosa, F.R.; Pansch, C.# (2020) Population structure of recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquatic Invasions 15: 297-317 (# shared supervision of PhD candidate O.M. Nour)

2019:

24)    Stumpp, M.; Dupont, S.; Hu, M.Y. (2019) Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research. In “Methods of Cell biology 150: Echinoderms Part A”. Kathy R. Foltz, Amro Hamdoun (eds..), Chapter 16: p391-409. doi:10.1016/bs.mcb.2018.11.017

23)    Lee, H.G.; Stumpp, M.; Yan, J.J.; Tseng, Y.C.; Heinzel, S.; Hu, M.Y. (2019) Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2-induced seawater acidification. Comparative Biochemistry and Physiology part A 234: 87-97

2018:

22)    Hu, M.Y.; Yan, J.J..; Su, Y.H.; Petersen, I.; Himmerkus, N.; Bleich, M.; Stumpp, M. (2018) A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos. eLife 2018;7:e36600

21)    Hu, M.Y.; Lein, E.; Bleich, M.; Melzner, F.; Stumpp, M. (2018) Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens. Acta Physiologica doi: 10.1111/apha.13075

2017:

20)    Hu, M.Y.; Tseng, Y.C.; Su, Y.H.; Lein, E.; Lee, J.R.; Dupont, S.; Stumpp, M. (2017) Variability in larval gut pH regulation defines sensitivity to ocean acidification in  six species of the ambulacraria superphylum. Proceedings of the Royal Society London B (Biol) doi: 10.1098/rspb.2017.1066

19)    Stumpp M.; Hu M.Y. (2017) pH regulation and excretion in echinoderms. In “Acid-Base Balance and Nitrogen Excretion in Invertebrates” D. Weihrauch, M. O`Donnell (eds.) Chapter 10: p261-273. doi: 10.1007/978-3-319-39617-0_10

18)    Runcie, D.E.; Dorey, N.; Garfield, D.A.; Stumpp, M.; Dupont, S.; Wray. G.A. (2017) Genomic characterization of the evolutionary potential of the sea urchin Strongylocentrotus droebachiensis facing ocean acidification. Genome Biol and Evol 8 (12):3672-3684

2016:

17)    Hu, M.Y.; Michael, K; Kreiss, C.M.; Stumpp, M.; Dupont, S.; Tseng, Y.C.; Lucassen, M. (2016) Temperature modulates the effect of ocean acidification on intestinal ion transport in Atlantic cod Gadus morhua. Frontiers in Physiology 7:198

2015:

16)    Stumpp M.1; Hu. M.Y.1; Tseng Y-C.; Guh Y-J; Chen Y-C.; Yu J-K.; Su Y-H; Hwang P-P. (2015) Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes. Scientific Reports, 5:10421

15)    Basse W.; Gutowska M.A.; Findeisen U.; Stumpp M.; Dupont S.; Jackson D.; Himmerkus N.; Melzner F.; Bleich M. (2015) A sea urchin Na+K+2Cl- cotransporter is involved in the maintenance of calcification-relevant cytoplasmic cords in Strongylocentrotus droebaciensis larvae. Comparative Biochemistry and Physiology A 187:184-192

2014 and before:

14)    Hu M.Y.; Lee J-R.; Stumpp M.; Guh Y-J; Hwang P-P.; Tseng Y-C. (2014) Branchial NH4+-dependent acid-base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Frontiers in Zoology, 11:55

13)    Hu M. Y.; Casties I.; Stumpp M.; Ortega-Martinez O.; Dupont S. (2014) Energy metabolism and regeneration impaired by seawater acidification in the infaunal brittlestar, Amphiura filiformis. The Journal of Experimental Biology, 217: 2411-2421

12)    Hu M.Y.; Lee J-R., Lin L-Y.; Shih T-H.; Stumpp M.; Lee M-F.; Hwang P-P.; Tseng Y-C. (2013) Development in a naturally acidified environment: Na+/H+-exchanger3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Frontiers in Zoology, 10:51-67

11) Stumpp M.1; Hu. M.Y.1; Casties I.; Saborowski R.; Bleich M.; Melzner F.; Dupont S. (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nature Climate Change, 3:1044-1049 (1 equal contribution)

10) Holtmann W.C.; Stumpp M.; Gotowska M.A.; Syré S.; Himmerkus N.; Melzner F.; Bleich M, (2013) Maintenance of coelomic fluid pH in sea urchins exposed to elevated CO2: the role of body cavity epithelia and stereo dissolution. Marine Biology 160: 2631-2645

9) Tseng Y.-C.1; Hu M.Y.1; Stumpp M.; Li-Yih L., Melzner F.; Hwang P-P. (2013) CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comparative Biochemistry and Physiology A, 165:119–130 (1equal contribution)

8) Stumpp M.1; Hu M.Y.1; Melzner F.; Dorey N.; Himmerkus N.; Gutowska M.A.; Dupont S.; Thorndyke M.C.; Bleich M. (2012) Acidified seawater impacts sea urchin larval pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences of the U.S.A., 109:18192-18197 (1equal contribution)

7) Stumpp M.; Trübenbach K.; Brennecke D.; Hu M.Y.; Melzner F. (2012) Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquatic Toxicology, 110-111: 194-207

6) Dupont S.; Dorey N.; Stumpp M.; Melzner F.; Thorndyke, M. (2012) Long term and trans life-cycle effects of exposure to ocean acidification in the green sea urchin. Marine Biology 160:1835-1843

5) Hu M.Y.; Tseng Y.-C.; Stumpp M.; Gutowska M.; Kiko R.; Lucassen M.; Melzner F. (2011) Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. American Journal of Physiology Regulatory and Integrative Physiology, 300:R1100-R1114

4) Stumpp M.; Wren J.; Melzner F.; Thorndyke M.C.; Dupont S. (2011) CO2 induced seawater acidification impact sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology A 160: 331-340

3) Stumpp M.; Dupont S.; Thorndyke M.C.; Melzner F. (2011) CO2 induced seawater acidification impact sea urchin larval development II: Developmental delay influences the interpretation of gene expression patterns. Comparative Biochemistry and Physiology A 160:320-330

2) Melzner F.; Gutowska M.; Hu M.Y.; Stumpp M. (2009) Acid-base regulatory capacity and associated proton extrusion mechanisms in marine invertebrates: an overview. Comparative Biochemistry and Physiology A 153:S80-S80

1) Laakmann S.; Stumpp M; Auel H. (2009) Vertical distribution and dietary preferences of deep-sea copepods (Euchaetidae and Aetideidae; Calanoida) in the vicinity of the Antarctic Polar Front. Polar Biology 32:879-689